Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.556
Filtrar
1.
Front Immunol ; 15: 1374763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596682

RESUMO

Background: Psoriasis is an immune-mediated disorder influenced by environmental factors on a genetic basis. Despite advancements, challenges persist, including the diminishing efficacy of biologics and small-molecule targeted agents, alongside managing recurrence and psoriasis-related comorbidities. Unraveling the underlying pathogenesis and identifying valuable biomarkers remain pivotal for diagnosing and treating psoriasis. Methods: We employed a series of bioinformatics (including single-cell sequencing data analysis and machine learning techniques) and statistical methods to integrate and analyze multi-level data. We observed the cellular changes in psoriatic skin tissues, screened the key genes Fatty acid binding protein 5 (FABP5) and The killer cell lectin-like receptor B1 (KLRB1), evaluated the efficacy of six widely prescribed drugs on psoriasis treatment in modulating the dendritic cell-associated pathway, and assessed their overall efficacy. Finally, RT-qPCR, immunohistochemistry, and immunofluorescence assays were used to validate. Results: The regulatory influence of dendritic cells (DCs) on T cells through the CD70/CD27 signaling pathway may emerge as a significant facet of the inflammatory response in psoriasis. Notably, FABP5 and KLRB1 exhibited up-regulation and co-localization in psoriatic skin tissues and M5-induced HaCaT cells, serving as potential biomarkers influencing psoriasis development. Conclusion: Our study analyzed the impact of DC-T cell crosstalk in psoriasis, elucidated the characterization of two biomarkers, FABP5 and KLRB1, in psoriasis, and highlighted the promise and value of tofacitinib in psoriasis therapy targeting DCs.


Assuntos
Psoríase , Humanos , Psoríase/tratamento farmacológico , Pele/patologia , Queratinócitos/metabolismo , Biomarcadores/metabolismo , Células Dendríticas/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo
2.
Int J Med Sci ; 21(5): 862-873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617005

RESUMO

Background: Direct liver invasion (DI) is a predominant pathway of gallbladder cancer (GBC) metastasis, but the molecular alterations associated with DI remain addressed. This study identified specific genes correlated with DI, which may offer a potential biomarker for the diagnosis and prognosis of advanced GBC. Methods: RNA samples from 3 patients with DI of GBC were used for RNA-seq analysis. Differentially expressed genes and metabolic pathways between primary tumor (T) and DI tissue was used to analyze aberrant gene expressions. Immunohistochemistry (IHC) of fatty acid binding protein 1 (FABP1) in 62 patients with DI was engaged to evaluate its association with clinicopathological characteristics and prognosis. IHC of CD3+ and CD8+ T cells was analyzed for their correlation with FABP1 expression, clinicopathological features and prognosis. Univariate and multivariate Cox hazards regression analyses were performed to identify independent prognostic factors for disease-free survival (DFS) and overall survival (OS). Results: FABP1 mRNA levels were significantly upregulated in DI region compared to T tissue. IHC results showed identical results with elevated FABP1 (p < 0.0001). Expression of FABP1 in DI region was significantly associated with lymph node metastasis (P = 0.028), reduced DFS (P = 0.013) and OS (P = 0.022); in contrast, its expression in T region was not associated with clinicopathological characteristics and prognosis (P > 0.05). The density of CD8+ T cells in DI region with higher FABP1 expression was significantly lower than that with lower FABP1 expression (p = 0.0084). Multivariate analysis unveiled those hepatic metastatic nodules (HR = 3.35, 95%CI: 1.37-8.15, P = 0.008) and FABP1 expression in DI region (HR = 2.01, 95%CI: 1.05-3.88, P = 0.036) were high risk factors for OS, and FABP1(HR = 2.05, 95%CI: 1.04-4.06, P = 0.039) was also a high risk factor for DFS. Conclusions: Elevated expression of FABP1 in DI region serves as a potential prognostic biomarker for advanced GBC with DI.


Assuntos
Carcinoma in Situ , Carcinoma , Neoplasias da Vesícula Biliar , Humanos , Linfócitos T CD8-Positivos , Proteínas de Ligação a Ácido Graxo/genética , Neoplasias da Vesícula Biliar/genética , Fígado , Prognóstico
3.
Nihon Yakurigaku Zasshi ; 159(2): 118-122, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38432920

RESUMO

Polyunsaturated fatty acids (PUFAs) are essential for brain development and function, and an imbalance of brain PUFAs is linked to mental disorders like autism and schizophrenia. However, the cellular and molecular mechanisms underlying the effects of PUFAs on the brain remain largely unknown. Since they are insoluble in water, specific transporters like fatty acid binding proteins (FABPs), are required for transport and function of PUFAs within cells. We focused on the relationship between FABP-mediated homeostasis of brain PUFAs and neural plasticity. We found that FABP3, with a high affinity for n-6 PUFAs, is predominantly expressed in the GABAergic inhibitory interneurons of the anterior cingulate cortex (ACC) in the adult mouse brain. FABP3 knockout (KO) mice show increased GABA synthesis and inhibitory synaptic transmission in the ACC. We also found that FABP7 controls lipid raft function in astrocytes, and astrocytes lacking FABP7 exhibit changes in response to external stimuli. Furthermore, in FABP7 KO mice, dendritic protrusion formation in pyramidal neurons becomes abnormal, and we have reported a decrease in spine density and excitatory synaptic transmission. Here, we introduced recent advances in the understanding of the functions of PUFAs and FABPs in the brain, focusing especially on FABP3 and FABP7, in relation to human mental disorders.


Assuntos
Proteínas de Ligação a Ácido Graxo , Transtornos Mentais , Adulto , Animais , Camundongos , Humanos , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos Insaturados , Encéfalo , Astrócitos , Camundongos Knockout
4.
J Cell Biol ; 223(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429999

RESUMO

Cholesterol from low-density lipoprotein (LDL) can be transported to many organelle membranes by non-vesicular mechanisms involving sterol transfer proteins (STPs). Fatty acid-binding protein (FABP) 7 was identified in our previous study searching for new regulators of intracellular cholesterol trafficking. Whether FABP7 is a bona fide STP remains unknown. Here, we found that FABP7 deficiency resulted in the accumulation of LDL-derived cholesterol in lysosomes and reduced cholesterol levels on the plasma membrane. A crystal structure of human FABP7 protein in complex with cholesterol was resolved at 2.7 Å resolution. In vitro, FABP7 efficiently transported the cholesterol analog dehydroergosterol between the liposomes. Further, the silencing of FABP3 and 8, which belong to the same family as FABP7, caused robust cholesterol accumulation in lysosomes. These two FABP proteins could transport dehydroergosterol in vitro as well. Collectively, our results suggest that FABP3, 7, and 8 are a new class of STPs mediating cholesterol egress from lysosomes.


Assuntos
Colesterol , Proteínas de Ligação a Ácido Graxo , Lisossomos , Humanos , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Lisossomos/metabolismo , Esteróis/metabolismo
5.
Tissue Cell ; 87: 102314, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309204

RESUMO

Lymphatic metastasis is a common metastasis of lung adenocarcinoma (LUAD). The current study illustrated the action of lncRNA NKX2-1-AS1 in lymphangiogenesis in LUAD and the underlying mechanisms. Clinical tissue samples were collected for determining NKX2-1-AS1 expression. Then, H441 and H661 cells were selected to perform gain- and loss-of-function assays for dissecting the roles of NKX2-1-AS1 in LUAD cell proliferation and migration. Besides, H441 and H661 cell supernatant was harvested to stimulate HLECs for assessing tube formation ability. Interaction among NKX2-1-AS1, ERG, and fatty acid binding protein 4 (FABP4) was validated through luciferase and RIP assays. NKX2-1-AS1 was highly-expressed in LUAD tissues. Silencing NKX2-1-AS1 suppressed H441 and H661 cell proliferation and migration, reduced expression levels of lymphangiogenesis-related factors (LYVE-1, VEGF-C, VEGFR3, VEGF-A, VEGFR2, and CCR7), and inhibited HLEC tube formation. Interaction validation demonstrated that NKX2-1-AS1 regulated FABP4 transcription by binding to ERG. Overexpression of FABP4 could effectively block the inhibition role of NKX2-1-AS1 silencing in lymphangiogenesis in H441 and H661 cells. This study provided evidence that NKX2-1-AS1 regulated FABP4 transcription by binding to ERG to facilitate the proliferation and migration of LUAD cells and tube formation of HLECs, thus participating in lymphangiogenesis.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Adenocarcinoma/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação Neoplásica da Expressão Gênica , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfangiogênese/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
6.
Cell Biol Toxicol ; 40(1): 9, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311675

RESUMO

Circular RNAs (circRNAs) have been documented to play crucial roles in the biology of various cancers. However, their investigation in melanoma is still at an early stage, particularly as a broader mechanism beyond acting as miRNA sponges needs to be explored. We report here that circFCHO2(hsa_circ_0002490), a circRNA encompassing exons 19 and 20 of the FCHO2 gene, exhibited a consistent overexpression in melanoma tissues. Furthermore, elevated circFCHO2 levels demonstrated a positive correlation with the malignant phenotype and poor prognosis among the 158 melanoma patients studied. Besides, we observed that heightened levels of circFCHO2 promoted melanoma cell proliferation, migration, and invasion in vitro, along with contributing to tumor growth in vivo. Furthermore, we found differences in the secondary structure of circFCHO2 compared to most other circular RNA structures. It has fewer miRNA binding sites, while it has more RNA binding protein binding sites. We therefore speculate that circFCHO2 may have a function of interacting with RNA binding proteins. Mechanistically, it was confirmed by fluorescence in situ hybridization (FISH), RNA-pull down, RNA immunoprecipitation (RIP), and western blotting assays that circFCHO2 interacts with dead end protein homolog 1 (DND1) and reverses the inhibition of the PI3K/AKT signaling pathway by binding to DND1. Our findings reveal that circFCHO2 drives melanoma progression by regulating the PI3K/AKT signaling pathway through direct binding to DND1 and may serve as a potential diagnostic biomarker and therapeutic target for the treatment of melanoma.


Assuntos
Proteínas de Ligação a Ácido Graxo , Melanoma , Proteínas de Neoplasias , RNA Circular , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , Melanoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , Proteínas de Neoplasias/genética , Proteínas de Ligação a Ácido Graxo/genética
7.
Cell Mol Life Sci ; 81(1): 83, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341383

RESUMO

BACKGROUND AND AIMS: Due to a lack of donor grafts, steatotic livers are used more often for liver transplantation (LT). However, steatotic donor livers are more sensitive to ischemia-reperfusion (IR) injury and have a worse prognosis after LT. Efforts to optimize steatotic liver grafts by identifying injury targets and interventions have become a hot issue. METHODS: Mouse LT models were established, and 4D label-free proteome sequencing was performed for four groups: normal control (NC) SHAM, high-fat (HF) SHAM, NC LT, and HF LT to screen molecular targets for aggravating liver injury in steatotic LT. Expression detection of molecular targets was performed based on liver specimens from 110 donors to verify its impact on the overall survival of recipients. Pharmacological intervention using small-molecule inhibitors on an injury-related target was used to evaluate the therapeutic effect. Transcriptomics and metabolomics were performed to explore the regulatory network and further integrated bioinformatics analysis and multiplex immunofluorescence were adopted to assess the regulation of pathways and organelles. RESULTS: HF LT group represented worse liver function compared with NC LT group, including more apoptotic hepatocytes (P < 0.01) and higher serum transaminase (P < 0.05). Proteomic results revealed that the mitochondrial membrane, endocytosis, and oxidative phosphorylation pathways were upregulated in HF LT group. Fatty acid binding protein 4 (FABP4) was identified as a hypoxia-inducible protein (fold change > 2 and P < 0.05) that sensitized mice to IR injury in steatotic LT. The overall survival of recipients using liver grafts with high expression of FABP4 was significantly worse than low expression of FABP4 (68.5 vs. 87.3%, P < 0.05). Adoption of FABP4 inhibitor could protect the steatotic liver from IR injury during transplantation, including reducing hepatocyte apoptosis, reducing serum transaminase (P < 0.05), and alleviating oxidative stress damage (P < 0.01). According to integrated transcriptomics and metabolomics analysis, cAMP signaling pathway was enriched following FABP4 inhibitor use. The activation of cAMP signaling pathway was validated. Microscopy and immunofluorescence staining results suggested that FABP4 inhibitors could regulate mitochondrial membrane homeostasis in steatotic LT. CONCLUSIONS: FABP4 was identified as a hypoxia-inducible protein that sensitized steatotic liver grafts to IR injury. The FABP4 inhibitor, BMS-309403, could activate of cAMP signaling pathway thereby modulating mitochondrial membrane homeostasis, reducing oxidative stress injury in steatotic donors.


Assuntos
Proteínas de Ligação a Ácido Graxo , Fígado Gorduroso , Transplante de Fígado , Traumatismo por Reperfusão , Animais , Camundongos , Biomarcadores , Proteínas de Ligação a Ácido Graxo/genética , Fígado Gorduroso/cirurgia , Hipóxia , Fígado/metabolismo , Multiômica , Proteômica , Traumatismo por Reperfusão/metabolismo , Transaminases/metabolismo
8.
J Ovarian Res ; 17(1): 44, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373971

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most complex endocrine disorders in women of reproductive age. Abnormal proliferation of granulosa cells (GCs) is an important cause of PCOS. This study aimed to explore the role of fatty acid-binding protein 5 (FABP5) in granulosa cell (GC) proliferation in polycystic ovary syndrome (PCOS) patients. METHODS: The FABP5 gene, which is related to lipid metabolism, was identified through data analysis of the gene expression profiles of GSE138518 from the Gene Expression Omnibus (GEO) database. The expression levels of FABP5 were measured by quantitative real-time PCR (qRT‒PCR) and western blotting. Cell proliferation was evaluated with a cell counting kit-8 (CCK-8) assay. Western blotting was used to assess the expression of the proliferation marker PCNA, and immunofluorescence microscopy was used to detect Ki67 expression. Moreover, lipid droplet formation was detected with Nile red staining, and qRT‒PCR was used to analyze fatty acid storage-related gene expression. RESULTS: We found that FABP5 was upregulated in ovarian GCs obtained from PCOS patients and PCOS mice. FABP5 knockdown suppressed lipid droplet formation and proliferation in a human granulosa-like tumor cell line (KGN), whereas FABP5 overexpression significantly enhanced lipid droplet formation and KGN cell proliferation. Moreover, we determined that FABP5 knockdown inhibited PI3K-AKT signaling by suppressing AKT phosphorylation and that FABP5 overexpression activated PI3K-AKT signaling by facilitating AKT phosphorylation. Finally, we used the PI3K-AKT signaling pathway inhibitor LY294002 and found that the facilitation of KGN cell proliferation and lipid droplet formation induced by FABP5 overexpression was inhibited. In contrast, the PI3K-AKT signaling pathway agonist SC79 significantly rescued the suppression of KGN cell proliferation and lipid droplet formation caused by FABP5 knockdown. CONCLUSIONS: FABP5 promotes active fatty acid synthesis and excessive proliferation of GCs by activating PI3K-AKT signaling, suggesting that abnormally high expression of FABP5 in GCs may be a novel biomarker or a research target for PCOS treatment.


Assuntos
Proteínas de Ligação a Ácido Graxo , MicroRNAs , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Camundongos , Proliferação de Células/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Células da Granulosa/metabolismo , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Nat Metab ; 6(1): 94-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38216738

RESUMO

Adipose tissue lipolysis is mediated by cAMP-protein kinase A (PKA)-dependent intracellular signalling. Here, we show that PKA targets p21-activated kinase 4 (PAK4), leading to its protein degradation. Adipose tissue-specific overexpression of PAK4 in mice attenuates lipolysis and exacerbates diet-induced obesity. Conversely, adipose tissue-specific knockout of Pak4 or the administration of a PAK4 inhibitor in mice ameliorates diet-induced obesity and insulin resistance while enhancing lipolysis. Pak4 knockout also increases energy expenditure and adipose tissue browning activity. Mechanistically, PAK4 directly phosphorylates fatty acid-binding protein 4 (FABP4) at T126 and hormone-sensitive lipase (HSL) at S565, impairing their interaction and thereby inhibiting lipolysis. Levels of PAK4 and the phosphorylation of FABP4-T126 and HSL-S565 are enhanced in the visceral fat of individuals with obesity compared to their lean counterparts. In summary, we have uncovered an important role for FABP4 phosphorylation in regulating adipose tissue lipolysis, and PAK4 inhibition may offer a therapeutic strategy for the treatment of obesity.


Assuntos
Lipólise , Esterol Esterase , Animais , Camundongos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Lipólise/fisiologia , Obesidade/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Esterol Esterase/genética , Esterol Esterase/metabolismo
10.
Asian Pac J Cancer Prev ; 25(1): 233-239, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285789

RESUMO

BACKGROUND: Tumor-specific biomarkers are needed for accomplishing antidote in early detection, as well as prognosis and designing therapeutic strategies. Comprehensive transcriptome profiling offers critical insights into the disease and reveal new avenue for drug discovery. METHODS: Total 5 cancerous and histopathological normal tissue pairs of 5 OSCC patients included in the petite study. Transcriptome sequencing was performed using Roche's 454 sequencing platform followed by CLC Genomics Workbench was used to examine gene expression in OC development. RESULTS: A total 2082 genes were differentially expressed across all the five tumor-control pairs collected from the OC patients during the surgery. From these 1092 upregulated and 273 downregulated genes, whereas 717 genes were found to be non-significant. The genes with pvalue <0.05 and log2foldchange > 1 or log2foldchange < -1 were considered for further enrichment analysis. Topfunn was used for gene enrichment analysis to identify gene enrichment pathway analysis found some cancer related pathways such as TNF signaling, p53 signaling pathway, cGMP-PKG signaling pathway, Apelin signaling pathway and IL-17 signaling pathway were strikingly involved in proliferation and apoptosis of tumor cells. The PPI network construction was performed and identified 8 best protein interactions. CONCLUSION: The current study reports molecular biomarkers including INHBA, FJX1, OLR1, CDK2, IGHM, CXCL11, SH2D5 and FABP5 associated with cancer that can led to identify potential therapeutic targets for the better prognosis of the cancer patients. The signature candidate can be translated to clinical practice to increase early diagnostic accuracy.


Assuntos
Neoplasias , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Genômica , Biomarcadores Tumorais/genética , Neoplasias/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Ligação a Ácido Graxo/genética
11.
Osteoarthritis Cartilage ; 32(3): 266-280, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38035977

RESUMO

OBJECTIVE: Osteoarthritis (OA) is often accompanied by debilitating pain that is refractory to available analgesics due in part to the complexity of signaling molecules that drive OA pain and our inability to target these in parallel. Fatty acid binding protein 5 (FABP5) is a lipid chaperone that regulates inflammatory pain; however, its contribution to OA pain has not been characterized. DESIGN: This combined clinical and pre-clinical study utilized synovial tissues obtained from subjects with end-stage OA and rats with monoiodoacetate-induced OA. Cytokine and chemokine release from human synovia incubated with a selective FABP5 inhibitor was profiled with cytokine arrays and ELISA. Immunohistochemical analyses were conducted for FABP5 in human and rat synovium. The efficacy of FABP5 inhibitors on pain was assessed in OA rats using incapacitance as an outcome. RNA-seq was then performed to characterize the transcriptomic landscape of synovial gene expression in OA rats treated with FABP5 inhibitor or vehicle. RESULTS: FABP5 was expressed in human synovium and FABP5 inhibition reduced the secretion of pronociceptive cytokines (interleukin-6 [IL6], IL8) and chemokines (CCL2, CXCL1). In rats, FABP5 was upregulated in the OA synovium and its inhibition alleviated incapacitance. The transcriptome of the rat OA synovium exhibited >6000 differentially expressed genes, including the upregulation of numerous pronociceptive cytokines and chemokines. FABP5 inhibition blunted the upregulation of the majority of these pronociceptive mediators. CONCLUSIONS: FABP5 is expressed in the OA synovium and its inhibition suppresses pronociceptive signaling and pain, indicating that FABP5 inhibitors may constitute a novel class of analgesics to treat OA.


Assuntos
Citocinas , Osteoartrite , Humanos , Ratos , Animais , Citocinas/metabolismo , Osteoartrite/metabolismo , Dor/metabolismo , Quimiocinas/metabolismo , Membrana Sinovial/metabolismo , Analgésicos , Proteínas de Ligação a Ácido Graxo/genética
12.
Nephrology (Carlton) ; 29(3): 117-125, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950597

RESUMO

AIM: Circulated histones play a crucial role in the pathogenesis of infectious diseases and severe trauma, and it is one of the potential molecular targets for therapeutics. Recently, we reported that histone is one of the causative agents for urinary L-FABP increase. However, the mechanism is still unclear, especially in severe cases. We further investigated the mechanism of urinary L-FABP increase using a more severe mouse model with histone-induced kidney injury. This study also aims to evaluate the therapeutic responsiveness of urinary L-FABP as a preliminary study. METHODS: Human L-FABP chromosomal transgenic mice were administrated 30 mg/kg histone from a tail vein with a single dose. We also performed a comparative study in LPS administration model. For the evaluation of the therapeutic responsiveness of urinary L-FABP, we used heparin and rolipram. RESULTS: The histological change with cast formation as a characteristic of the models was observed in proximal tubules. Urinary L-FABP levels were significantly elevated and these levels tended to be higher in those with more cast formation. Heparin and rolipram had the ameliorative effect of the cast formation induced by histone and urinary L-FABP levels significantly decreased. CONCLUSION: Histone is one of the causative agents for the increase of urinary L-FABP at an early stage of AKI. In addition, it suggested that urinary L-FABP may be useful as a subclinical AKI marker reflecting kidney damage induced by histone. Furthermore, urinary L-FABP reflected the degree of the damage after the administration of therapeutic agents such as heparin and PDE4 inhibitor.


Assuntos
Injúria Renal Aguda , Histonas , Camundongos , Animais , Humanos , Preparações Farmacêuticas , Rolipram , Rim/patologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Camundongos Transgênicos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/urina , Biomarcadores/urina , Heparina , Fígado
13.
Biochem Pharmacol ; 219: 115974, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081366

RESUMO

Fatty acid binding protein 5 (FABP5) is an intracellular chaperone of fatty acid molecules that regulates lipid metabolism and cell growth. However, its role in intestinal inflammation remains enigmatic. Through examination of human tissue samples and single-cell data, we observed a significant upregulation of FABP5 within the mucosa of patients afflicted with ulcerative colitis (UC) and Crohn's disease (CD), predominantly localized in intestinal macrophages. Herein, we investigate the regulation of FABP5-IN-1, a FABP5 inhibitor, on various cells of the gut in an inflammatory environment. Our investigations confirmed that FABP5 ameliorates DSS-induced colitis in mice by impeding the differentiation of macrophages into M1 macrophages in vitro and in vivo. Furthermore, following FABP5-IN-1 intervention, we observed a notable restoration of intestinal goblet cells and tuft cells, even under inflammatory conditions. Additionally, FABP5-IN-1 exhibits a protective effect against DSS-induced colitis by promoting the polarization of macrophages towards the M2 phenotype in vivo. In summary, FABP5-IN-1 confers protection against DSS-induced acute colitis through a multifaceted approach, encompassing the reduction of inflammatory macrophage infiltration, macrophage polarization, regulating Th17/Treg cells to play an anti-inflammatory role in IBD. The implications for IBD are underscored by the comprehensive in vivo and in vitro experiments presented in this article, thereby positioning FABP5 as a promising and novel therapeutic target for the treatment of IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Colite/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Macrófagos , Anti-Inflamatórios/farmacologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo , Ativação de Macrófagos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo
14.
Int J Oncol ; 64(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38131188

RESUMO

Fatty acid­binding protein 5 (FABP5) and androgen receptor (AR) are critical promoters of prostate cancer. In the present study, the effects of knocking out the FABP5 or AR genes on malignant characteristics of prostate cancer cells were investigated, and changes in the expression of certain key proteins in the FABP5 (or AR)­peroxisome proliferator activated receptor­Î³ (PPARγ)­vascular endothelial growth factor (VEGF) signaling pathway were monitored. The results obtained showed that FABP5­ or AR­knockout (KO) led to a marked suppression of the malignant characteristics of the cells, in part, through disrupting this signaling pathway. Moreover, FABP5 and AR are able to interact with each other to regulate this pathway, with FABP5 controlling the dominant AR splicing variant 7 (ARV7), and AR, in return, regulates the expression of FABP5. Comparisons of the RNA profiles revealed the existence of numerous differentially expressed genes (DEGs) comparing between the parental and the FABP5­ or AR­KO cells. The six most abundant changes in DEGs were found to be attributable to the transition from androgen­responsive to androgen­unresponsive, castration­resistant prostate cancer (CRPC) cells. These findings have provided novel insights into the complex molecular pathogenesis of CRPC cells, and have demonstrated that interactions between FABP5 and AR contribute to the transition of prostate cancer cells to an androgen­independent state. Moreover, gene enrichment analysis revealed that the most highly enriched biological processes associated with the DEGs included those responsive to fatty acids, cholesterol and sterol biosynthesis, as well as to lipid and fatty acid transportation. Since these pathways regulated by FABP5 or AR may be crucial in terms of transducing signals for cancer cell progression, targeting FABP5, AR and their associated pathways, rather than AR alone, may provide a new avenue for the development of therapeutic strategies geared towards suppressing the malignant progression to CRPC cells.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Androgênios , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo
15.
FASEB J ; 38(1): e23347, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095503

RESUMO

The pathogenesis of osteoarthritis (OA) is still unclear. Fatty acid binding protein 4 (FABP4), a novel adipokine, has been found to play a role in OA. This study aimed to explore the role of NF-κB in FABP4-induced OA. In the in vivo study, four pairs of 12-week-old male FABP4 knockout (KO) and wild-type (WT) mice were included. The activation of NF-κB was assessed. In parallel, 24 6-week-old male C57/Bl6 mice were fed a high-fat diet (HFD) and randomly allocated to four groups: daily oral gavage with (1) PBS solution; (2) QNZ (NF-κB-specific inhibitor, 1 mg/kg/d); (3) BMS309403 (FABP4-specific inhibitor, 30 mg/kg/d); and (4) BMS309403 (30 mg/kg/d) + QNZ (1 mg/kg/d). The diet and treatment were sustained for 4 months. The knee joints were obtained to assess cartilage degradation, NF-κB activation, and subchondral bone sclerosis. In the in vitro study, a mouse chondrogenic cell line (ATDC5) was cultured. FABP4 was supplemented to stimulate chondrocytes, and the activation of NF-κB was investigated. In parallel, QNZ and NF-κB-specific siRNA were used to inhibit NF-κB. In vivo, the FABP4 WT mice had more significant NF-κB activation than the KO mice. Dual inhibition of FABP4 and NF-κB alleviated knee OA in mice. FABP4 has no significant effect on the activation of the JNK signaling pathway. In vitro, FABP4 directly activated NF-κB in chondrocytes. The use of QNZ and NF-κB-siRNA significantly alleviated the expression of catabolic markers of chondrocytes induced by FABP4. FABP4 induces chondrocyte degeneration by activating the NF-κB pathway.


Assuntos
NF-kappa B , Osteoartrite do Joelho , Animais , Masculino , Camundongos , Condrócitos/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , RNA Interferente Pequeno/genética , Transdução de Sinais
16.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069360

RESUMO

Parkinson's disease is a neurodegenerative condition characterized by motor dysfunction resulting from the degeneration of dopamine-producing neurons in the midbrain. This dopamine deficiency gives rise to a spectrum of movement-related symptoms, including tremors, rigidity, and bradykinesia. While the precise etiology of Parkinson's disease remains elusive, genetic mutations, protein aggregation, inflammatory processes, and oxidative stress are believed to contribute to its development. In this context, fatty acid-binding proteins (FABPs) in the central nervous system, FABP3, FABP5, and FABP7, impact α-synuclein aggregation, neurotoxicity, and neuroinflammation. These FABPs accumulate in mitochondria during neurodegeneration, disrupting their membrane potential and homeostasis. In particular, FABP3, abundant in nigrostriatal dopaminergic neurons, is responsible for α-synuclein propagation into neurons and intracellular accumulation, affecting the loss of mesencephalic tyrosine hydroxylase protein, a rate-limiting enzyme of dopamine biosynthesis. This review summarizes the characteristics of FABP family proteins and delves into the pathogenic significance of FABPs in the pathogenesis of Parkinson's disease. Furthermore, it examines potential novel therapeutic targets and early diagnostic biomarkers for Parkinson's disease and related neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios Dopaminérgicos/metabolismo
17.
Animal ; 17(12): 101033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064855

RESUMO

The intramuscular fat content and fatty acid composition of porcine meat have a significant impact on its quality and nutritional value. This research aimed to investigate the expression of 45 genes involved in lipid metabolism in the longissimus dorsi muscle of three experimental pig backcrosses, with a 25% of Iberian background. To achieve this objective, we conducted an expression Genome-Wide Association Study (eGWAS) using gene expression levels in muscle measured by high-throughput real-time qPCR for 45 target genes and genotypes from the PorcineSNP60 BeadChip or Axiom Porcine Genotyping Array and 65 single nucleotide polymorphisms (SNPs) located in 20 genes genotyped by a custom-designed Taqman OpenArray in a cohort of 354 animals. The eGWAS analysis identified 301 eSNPs associated with 18 candidate genes (ANK2, APOE, ARNT, CIITA, CPT1A, EGF, ELOVL6, ELOVL7, FADS3, FASN, GPAT3, NR1D2, NR1H2, PLIN1, PPAP2A, RORA, RXRA and UCP3). Three cis-eQTL (expression quantitative trait loci) were identified for GPAT3, RXRA, and UCP3 genes, which indicates that a genetic polymorphism proximal to the same gene is affecting its expression. Furthermore, 24 trans-eQTLs were detected, and eight candidate regulatory genes were located in these genomic regions. Additionally, two trans-regulatory hotspots in Sus scrofa chromosomes 13 and 15 were identified. Moreover, a co-expression analysis performed on 89 candidate genes and the fatty acid composition revealed the regulatory role of four genes (FABP5, PPARG, SCD, and SREBF1). These genes modulate the levels of α-linolenic, arachidonic, and oleic acids, as well as regulating the expression of other candidate genes associated with lipid metabolism. The findings of this study offer novel insights into the functional regulatory mechanism of genes involved in lipid metabolism, thereby enhancing our understanding of this complex biological process.


Assuntos
Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Animais , Estudo de Associação Genômica Ampla/veterinária , Metabolismo dos Lipídeos/genética , Genômica , Músculo Esquelético/metabolismo , Ácidos Graxos/análise , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo
18.
Biomolecules ; 13(12)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38136624

RESUMO

Fatty-acid-binding proteins (FABPs) serve a crucial role in the metabolism and transport of fatty acids and other hydrophobic ligands as an intracellular protein family. They are also recognized as a critical mediator in the inflammatory and ischemic pathways. FABPs are found in a wide range of tissues and organs, allowing them to contribute to various disease/injury developments that have not been widely discussed. We have collected and analyzed research journals that have investigated the role of FABPs in various diseases. Through this review, we discuss the findings on the potential of FABPs as biomarkers for various diseases in different tissues and organs, looking at their expression levels and their roles in related diseases according to available literature data. FABPs have been reported to show significantly increased expression levels in various tissues and organs associated with metabolic and inflammatory diseases. Therefore, FABPs are a promising novel biomarker that needs further development to optimize disease diagnosis and prognosis methods along with previously discovered markers.


Assuntos
Proteínas de Ligação a Ácido Graxo , Ácidos Graxos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Membrana Transportadoras , Biomarcadores
19.
Ter Arkh ; 95(10): 845-849, 2023 Nov 23.
Artigo em Russo | MEDLINE | ID: mdl-38159016

RESUMO

AIM: To study the contribution of the Ala54Thr genetic polymorphism of the FABP2 gene to the risk of developing type 2 diabetes mellitus among the Yakut population. MATERIALS AND METHODS: The study included participants who filled out a questionnaire approved by the Local Committee on Biomedical Ethics at the Yakut Science Centre of complex medical problems and voluntarily signed an informed consent to conduct a genetic study. The sample consisted of 181 patients of the endocrinological department of the Republican Hospital No. 2 of the State Budgetary Institution "Center for Emergency Medical Care" with a diagnosis of type 2 diabetes. The comparison group was a sample of 336 volunteers without chronic diseases of the Yakut ethnicity. For molecular genetic analysis, genomic DNA samples were isolated from whole blood. Single nucleotide polymorphism was determined by polymerase chain reaction followed by analysis of restriction fragment length polymorphism. RESULTS: Study showed that polymorphism in the FABP2 gene has an impact on anthropometric parameters and blood biochemical parameters. The risk of developing type 2 diabetes was 1.7 times higher in carriers of the Ala/Thr genotype (odds ratio 1.755, 95% confidence interval - 1.212-2.542; p<0.005) compared with carriers of other genotypes. When comparing the average biochemical values, the levels of aspartate transaminase, alanine aminotransferase, glucose and total bilirubin in homozygous carriers of the Ala/Ala genotype were significantly lower than in carriers of other genotypes (р<0.05). Carriers of the heterozygous Ala/Thr genotype (р<0.05) had the highest level in terms of aspartate aminotransferase and alanine aminotransferase. The highest indicator of the average level of HbA1c and an indicator of total bilirubin were carriers of the Thr/Thr genotype (р<0.05). CONCLUSION: The high prevalence of the negative Thr allele among the Yakut population is probably associated with living conditions in the North, as well as in the traditional type of diet.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas de Ligação a Ácido Graxo , Humanos , Alanina Transaminase/genética , Bilirrubina , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos , Genótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...